OPTIMIZATION OF MOLECULAR GEOMETRY OF *meta*-SUBSTITUTED BENZOIC ACIDS AND THEIR ANIONS BY GRADIENT CNDO/2 METHOD

Stanislav BÖHM and Josef KUTHAN

Department of Organic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Received January 11th, 1982

32 conformers of *meta*-substituted benzoic acids I and the corresponding anions II have been optimized with respect to all geometrical degrees of freedom by the title semiempirical MO approach. The calculated geometry characteristics are compared with some published data obtained by means of X-ray diffraction.

meta-Substituted benzoic acids and their ionized forms belong among fundamental molecular skeletons used in physical organic chemistry to quantitative studies of substituent effects. In theoretical studies of this effect by MO theory (and especially for subsequent non-empirical calculations) we needed commensurable molecular geometries of a larger set of the acids I and their anions II with the substituents $X = NH_{2}$, OH, OCH₃, CH₃, F, CN, NO₂. These data are accessible by diffraction methods, but out of the mentioned compounds the X-ray studies have been published so far for meta-amino- and meta-nitrobenzoic acids¹⁻⁵ only. Thus these data are of limited value for theoretical studies, and besides they are doubtful due to uncertain extent of influence of intermolecular interactions in crystal lattice (e.q. formation of dimers type III). Therefore, it appears useful to find the necessary molecular geometries by theoretical calculation of the whole investigated set of the species I and II by means of a suitable automatic optimization procedure based on a certain MO method. Although this intention could be realized directly by means of the corresponding non-empirical MO models of I and II, such approach, at present, seems to be economically feasible only for study of individual medium-sized molecules and not for obtaining an extensive data set which (due to conformation non-homogeneity of individual members in our series) necessitates optimization of more than thirty MO models of I and II. As a compromise way of calculation, therefore, we chose the gradient optimization procedure based on the CNDO/2 wave function⁶. Since the numerical calculations could be carried out without convergency complications in the cases investigated, and all the calculated data assumed reasonable values, we decided to publish the results. Thus we complement analogous data for the para-

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

-series⁷ and submit a complete set of total 51 molecular geometries suitable, in our opinion, as a starting material for various theoretical studies of substituent effect.

CALCULATIONS

All the calculations were carried out by the standard CNDO/2 method using standard parametrization⁸ and the Derival program involving the gradient method⁶ of full optimization of the molecular geometries. The way of generation of the molecular geometries and other details of the calculation are given in the previous communication⁷.

RESULTS AND DISCUSSION

The optimized molecular geometries are given in Tables I to VII in the form of the optimized bond lengths and angles. In the case of the non-ionized acids we always consider the both possible planar conformations *I*-anti and *I*-syn except for X = OH and OCH₃, where four conformations are considered for the acids (*I*-syn,syn, *I*-anti,anti, *I*-syn,anti, and *I*-anti,syn) and two conformations for the corresponding benzoates (*II*-anti and *II*-syn). Since in some theoretical studies *m*-hydroxybenzoic acid must be considered to dissociate its hydroxyl group, too, the studied set was extended also by optimization of two conformations of the corresponding anion *IV*-syn and *IV*-anti. Similar to ref.⁷, the optimization was limited to plane system of

Ш

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

1020

TABLE I

Comparison of calculated and experimental structural parameters of *m*-nitrobenzoic acid. The *syn(anti)* conformations are denoted as S(A); the symbols O(a) and O(b) belong to oxygen atom of nitro group with *syn* and *anti* orientation to hydroxyl of carboxylic group, respectively

Structure	I-A ^a	1-S ^a	111-S ^{h,d}	111-S ^{c,d}	11ª	77 (second
Bond lengths, pm						
C(1)-C(2)	139-4	139.4	138-4	138-3	139.3	
C(2)—C(3)	139-1	139.1	138.7	139.0	139.3	
C(3)-C(4)	139.4	139.3	138.0	138.5	139.4	
C(4)—C(5)	138.3	138.3	138-1	138.3	138-1	
C(5)C(6)	138-4	138.3	140.3	140.4	138-4	
C(6)C(1)	139.6	139.6	139.4	139-1	139-4	
C(7)-C(1)	144.7	144.7	149.4	148.8	147-4	
O(8)—C(7)	135.7	135.7	128.2	127.9	130.0	
O(9)C(7)	127.0	127.0	125-1	124.2	130.0	
N-C(3)	142-2	142-2	147.0	147.6	142.2	
O(a) - N	122.5	122-4	121.6	121.7	122.5	
O(b)—N	122.5	122.5	123.7	121.8	122.7	
H(2) - C(2)	111.8	111.7	91.7	82.2	111.9	
H(4) - C(4)	111.7	111.7	92.1	93.3	111.7	
H(5)—C(5)	111-6	111.6	114.5	104.2	111.8	
H(6)—C(6)	111.8	111.8	90.5	94.4	112.0	
H(8)—O(8)	103-2	103-2	88.8	82.7	_	
Bond angles, °						
C(1) - C(2) - C(3)	121.3	121.2	117.8	118.3	122.7	
C(2) - C(3) - C(4)	119-6	119.7	123.4	123.0	119.8	
C(3)C(4)C(5)	120.0	120.0	118.4	117-9	118-9	
C(4) - C(5) - C(6)	119.7	119.7	119.9	120.6	119-8	
C(5)-C(6)-C(1)	121-7	121.8	120.2	119.8	123-5	
C(6) - C(1) - C(2)	117-7	117.7	120.3	120.4	115-4	
C(7)-C(1)-C(2)	121.0	120.5	118-9	117.8	122.9	
N-C(3)-C(2)	120.2	119.4	117.4	118.6	121-0	
O(8)C(7)-C(1)	115.3	115.4	115.7	116.7	117-8	
O(9)-C(7)-C(1)	126.6	126.6	120.4	119.6	117-4	
O(a)NC(3)	119.3	119-4	118.8	117.8	120.5	
O(b)-N-C(3)	119.3	119.3	117.7	118.2	119-8	
H(2)C(2)-C(3)	118.9	118.9	114.9	105.5	117.7	
H(4)—C(4)—C(5)	120.6	120.6	127-4	114.7	121.1	
H(5)—C(5)—C(6)	120.3	120.4	117.4	115-4	120.7	
H(6)—C(6)—C(1)	119-1	119.0	119.8	117-0	118-7	
H(8)—O(8)—C(7)	108-3	108.1	116-1	117.3	_	

^a The CNDO/2-optimized structure; ^b molecule (1) of dimeric pair; ^c molecule (2) of the dimeric pair; ^d taken from ref.¹.

Böhm, Kuthan:

TABLE II

Comparison of calculated and experimental structural parameters of *m*-aminobenzoic acid. The *syn(anti)* conformations are denoted as S(A); the symbols H(a) and H(b) denote hydrogen atoms of amino group with *syn* and *anti* orientation to hydroxyl of carboxylic group, respectively

Structure	I-A ^{a,f}	/-S ^{a.f}	///-S ^{h.c.e}	111-S ^{c.d.e}	I-A ^{e,f}	I-S ^{e,f}	II ^{a.f}	II ^{e,f}
Bond lengths, pm								
C(1) – C(2)	139-4	139.4	138.5	138-1	139.5	139-4	139-2	139-4
C(2) - C(3)	139.4	139.5	139.5	138-1	139.3	139.4	139.5	139.4
C(3) -C(4)	139.7	139.6	139.8	139.1	139.6	139.5	139.4	139.4
C(4) C(5)	138.3	138.3	136.5	137.5	138-3	138.3	138.5	138.4
C(5) - C(6)	138-4	138.3	137.8	138.0	138.3	138-3	138.2	138-2
C(6)-C(1)	139.6	139.6	137.9	139-1	139.5	139.6	139.7	139.6
C(7)C(1)	144.7	144.7	148.0	148-1	144.6	144.6	147.2	147.2
O(8)C(7)	135.8	135.8	127.7	128.6	135.8	135.8	130.1	130.1
O(9)C(7)	127-1	127.1	125.4	124.6	127.1	127.1	130.1	130.1
N—C(3)	138.7	138.7	137.9	139.5	140.3	140.3	139-2	140.7
H(2) - C(2)	111.9	111.8	97.0	96.0	111.9	111.9	112.1	112.1
H(4) - C(4)	111.8	111.8	93.0	99.0	111.8	111.8	111.9	112.0
H(5)C(5)	111.7	111.7	97.0	95.0	111.7	111.7	112.0	112.0
H(6)C(6)	111.7	111.7	97.0	93.0	111.7	111.8	112.0	112.0
H(a)—N	106.0	106.0	86.0	92.0	107.0	107-0	106.1	107.1
H(b)N	106.0	106.0	91.0	91.0	107.0	107.0	106-1	107.0
H(8)O(8)	103-2	103-2	100.0	94.0	103-2	103-2	—	_
Bond angles, $^{\circ}$							· .	
C(1) - C(2) - C(3)	122.4	122.4	120.7	120.6	122.8	122.7	123.8	124.3
C(2) - C(3) - C(4)	117-4	117.5	118.2	119.1	117.1	117.1	118.1	117.5
C(3) - C(4) - C(5)	121.2	121.2	120.1	120.0	121.5	121.5	119.7	120.2
C(4) - C(5) - C(6)	120.4	120.4	121.7	121.4	120.2	120.1	120.5	120.3
C(5)-C(6)-C(1)	120.2	120.2	118.9	118.5	120.4	120.4	122.1	122.2
C(6)-C(1)-C(2)	118.4	118.4	120.3	120.4	118.2	118.2	115.8	115.5
C(7)-C(1)-C(2)	120.9	119.9	119.9	118.7	121.0	120.1	122-2	121.9
O(8)-C(7)-C(1)	115.6	115.8	115.2	117.9	115.5	115.6	117.9	118.0
O(9)-C(7)-C(1)	126.9	126.9	121.5	119.4	127.0	126.9	118.2	117.9
N-C(3)-C(2)	121.2	121.2	121.4	1.20.5	121.4	121.5	121.3	121.6
H(2)—C(2)—C(3)	118.7	118.7	120.9	119.5	118.6	118.7	118.3	117.2
H(4)—C(4)—C(5)	119.6	119.7	122.1	121.7	119.3	119-3	120.3	120.0
H(5)-C(5)C(6)	120.0	120.0	118.1	120-3	120.2	120.1	120.5	120.6
H(6)—C(6)—C(1)	119.8	119.8	120.6	119.9	119.7	119.7	119.5	119.5
H(a) - N - C(3)	122.6	122.7	119.9	117.0	110.7	110.7	123.1	110.5
H(b)-N-C(3)	122.8	122.8	115.0	114.9	110.7	110.6	123.1	110.6
H(8)—O(8)—C(7)	108.2	108.2	113.2	111.5	108.2	108.2	_	_

^{*a*} Planar NH₂; ^{*b*} molecule (1) of dimeric pair; ^{*c*} taken from ref.⁴; ^{*d*} molecule (2) of dimeric pair; ^{*e*} pyramidal NH₂; ^{*f*} the CNDO/2-optimized structure.

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

the starting approximation, because small deviations from the plane arrangement have slight effect on magnitude of the bond lengths and angles. Only in the case $X = NH_2$ we also considered pyramidal conformation of the said substituent. In the cases X = OH and OCH₃ we used (with respect to the formerly published^{9,10} *ab initio* MO calculations of phenol and anisole) also the coplanar starting conformation of the substituent X.

From Tables I - VII it is seen that the bond lengths and angles are usually slightly dependent on the respective conformation, remarkable being the changes in the region of ionization position during transformation of the acids *I* to the anions *II*. Variation

TABLE III

Calculated structural parameters of *m*-methylbenzoic acid. The syn(anti) conformations are denoted as S(A)

Bond, pm	<i>I</i> -A	/-S	11	Bond angle, °	I-A	/-S	11
C(1)-C(2)	139.6	139.6	139-4	C(1) - C(2) - C(3)	123.6	123.7	125.3
C(2)-C(3)	139.3	139.3	139.4	C(2) - C(3) - C(4)	115.8	115.8	116.1
C(3)C(4)	139.7	139.6	139.6	C(3)- C(4)-C(5)	122.6	122.5	121.3
C(4)C(5)	138.3	138-3	138-3	C(4) C(5)C(6)	119.6	119.7	119.8
C(5)-C(6)	138.3	138.3	138.3	C(5) - C(6) - C(1)	120.6	120.5	122.4
C(6)—C(1)	139.5	139.5	139.4	C(6) - C(1) - C(2)	117.8	117.8	115-1
C(7)-C(1)	144.6	144.6	147.2	C(7) - C(1) - C(2)	121.9	120.0	122.2
O(8) - C(7)	135.8	135.8	130.0	O(8) C(7) C(1)	115.8	115.8	118.0
O(9)—C(7)	127.1	127.1	130.0	O(9)-C(7)-C(1)	126.7	126.7	118.0
$C(H_1) - C(3)$	145.8	145.8	145.8	$C(H_3) - C(3) - C(4)$	121.5	121.9	121.5
H(2)—C(2)	112.0	112.0	112.2	H(2) - C(2) - C(3)	118.5	118.6	117.0
H(4)—C(4)	111.9	111.9	112.1	H(4)C(4)C(5)	118.6	118.6	119-2
H(5)—C(5)	111.7	111.7	111.9	H(5)-C(5)-C(6)	120.3	120.3	120.6
H(6)—C(6)	111.8	111.8	112.0	H(6)-C(6)-C(1)	119.5	119-7	119.5
$H(a) - C(H_3)^a$	112.0	112.0	112.1	$H(a) - C(H_3) - C(3)^a$	113.9	113.8	114.1
$H(b) - C(H_3)^a$	112.1	112.1	112.2	$H(b) - C(H_3) - C(3)^a$	111.8	111.8	112.5
$H(c) - C(H_3)^a$	112.1	112.1	112.2	$H(c) - C(H_3) - C(3)^a$	111-8	111.8	112.5
H(8)—O(8)	103-1	103-2	-	H(8)-O(8)-C(7)	108.0	108.0	_
Torsion angles,	0						
$H(a) - C(H_a) -$	C(3)—C	$(4)^a$			0.0	0.0	0.0
$H(b) = C(H_a) =$	C(3)C	$(4)^a$			120.5	120.6	120.5
$H(c) - C(H_3) - C(H$	C(3)- C	$(4)^{a}$			-120.5	-120.6	-120.5

^a The symbols H(a, b, c) are used to denote hydrogen atoms of methyl group.

Collection Czechoslovak Chem. Commun. [Vol. 48] [1983]

Böhm, Kuthan:

1024

TABLE IV

Calculated structural parameters of *m*-methoxybenzoic acid. The syn(anti) conformations are denoted as S(A); the symbol H(a, b, c) is used for hydrogen atoms of methyl group

Bond lengths, pm $C(1) - C(2)$ 139·7 139·3 139·6 139·3 139·5 139·2 $C(2) - C(3)$ 138·9 139·4 139·0 139·4 138·9 139·4 $C(3) - C(4)$ 139·6 139·1 139·6 139·1 139·4 138·9 $C(4) - C(5)$ 138·2 138·5 138·5 138·3 138·6 $C(5) - C(6)$ 138·4 138·2 138·4 138·1 138·3 138·1 $C(6) - C(1)$ 139·4 139·6 139·4 139·6 139·4 139·6 $C(7) - C(1)$ 144·7 144·7 144·7 147·2 0(8) - C(7) 135·8 136·9 136·9 136·9 136·9 136·9 136·9 136·9 136·9 130·0 130·1 110·1 <td< th=""><th>Structure</th><th><i>I</i>-A,S</th><th>I-A,A</th><th><i>I-</i>S,S</th><th>/-S,A</th><th>//-S</th><th>/<i>I</i>-A</th></td<>	Structure	<i>I</i> -A,S	I-A,A	<i>I-</i> S,S	/-S,A	//-S	/ <i>I</i> -A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond lengths, pm						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)C(2)	139.7	139-3	139-6	139-3	139.5	139-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)-C(3)	138-9	139-4	139.0	139-4	138-9	139-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-C(4)	139.6	139-1	139-6	139-1	139.4	139.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)C(5)	138-2	138.5	138-2	138.5	138.3	138-6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)C(6)	138-4	138-2	138.4	138-1	138-3	138-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)—C(1)	139.4	139.6	139.4	139.6	139.4	139.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(7)—C(1)	144.7	144.7	144.7	144.7	147.3	147.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(8)C(7)	135.8	135.7	135.7	135.8	130.0	130.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(9)-C(7)	127.1	127-1	127.1	127.1	130.0	130.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10) - C(3)	137.2	137-2	137-2	137.2	137.7	137.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(11)-O(10)	136-9	136.9	136.9	136.9	136.6	136.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(2)—C(2)	111.8	111.8	111.7	111.8	111.9	112.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(4)C(4)	111.7	111.7	111.7	111.7	111.8	111-9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(5)-C(5)	111.7	111.7	111.7	111.7	112.0	112.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(6)—C(6)	111.7	111.7	111.7	111.7	111.9	112.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(a) - C(11)	111.9	111.9	111-9	111-9	111.9	111-9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(b)C(11)	112.1	11.2-1	112.1	112.1	112.3	112.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(c)—C(11)	112.1	112-1	112.1	112.1	112.3	112-3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(8)—O(8)	103-2	103-2	103-2	103-2	—	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bond angles, °						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)C(2)C(3)	121.3	122.4	121.4	122.3	122.8	123.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)C(3)C(4)	118.3	118.3	118.3	118.3	118.7	118-9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)C(4)C(5)	121.2	120.1	121.2	120.1	119.8	118.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)-C(5)-C(6)	119.9	121.0	120.0	121.0	120.2	121.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)C(6)C(1)	120.3	120.3	120.3	120.3	122.0	122-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)—C(1)—C(2)	119.0	118.0	119.0	118.0	116.5	115.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(7)—C(1)—C(6)	120.6	120.5	121.9	121.5	122.6	122.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(8)—C(7)—C(1)	115.6	115.8	115.8	115.4	118.0	118-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(9)—C(7)—C(1)	126.9	126.6	126.7	127.0	117.9	117.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10)—C(3)—C(2)	127.0	114.7	126.9	114.7	127.1	114.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(11)—O(10)—C(3)	117.9	117.9	117.7	117.8	117.6	117.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(2)-C(2)-C(3)	121.2	118.4	121.2	118.5	120.0	117-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(4) - C(4) - C(3)	118.9	121.7	119.0	121.8	119.7	122.6
$\begin{array}{cccccccc} H(6)-C(6)-C(5) & 120\cdot 0 & 120\cdot 0 & 120\cdot 0 & 119\cdot 9 & 118\cdot 5 & 118\cdot 4 \\ H(a)-C(11)-O(10) & 115\cdot 1 & 115\cdot 1 & 115\cdot 1 & 115\cdot 0 & 115\cdot 5 & 115\cdot 4 \\ H(b)-C(11)-O(10) & 109\cdot 2 & 109\cdot 2 & 109\cdot 2 & 109\cdot 2 & 109\cdot 6 & 109\cdot 8 \\ H(c)-C(11)-O(10) & 109\cdot 2 & 109\cdot 2 & 109\cdot 2 & 109\cdot 2 & 109\cdot 6 & 109\cdot 8 \\ \end{array}$	H(5) - C(5) - C(4)	119.8	119-1	119.8	119-1	119-2	118.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(6)—C(6)—C(5)	120.0	120.0	120.0	119.9	118.5	118-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(a)-C(11)-O(10)	115-1	115-1	115-1	115.0	115.5	115.4
H(c)-C(11)-O(10) 109.2 109.2 109.2 109.2 109.6 109.8	H(b)-C(11)-O(10)	109-2	109.2	109-2	109-2	109.6	109.8
	H(c)-C(11)-O(10)	109-2	109.2	109.2	109.2	109.6	109.8
H(8) - O(8) - C(7) 108.2 108.1 108.1 108.3	H(8)-O(8)-C(7)	108-2	108.1	108.1	108-3	_	

meta-Substituted Benzoic Acids a	and Their A	nions				1025
TABLE IV						
(Continued)						
Structure	I-A,S	<i>I</i> -A,A	<i>I-</i> S,S	I-S,A	II-S	<i>II</i> -A
Torsion angles, °						
H(a) - C(11) - O(10) - C(3)	0.0	0.0	0.0	0.0	0.0	0.0
H(b) - C(11) - O(10) - C(3)	121.2	121.2	121.1	121-1	121.4	121.3
H(c) - C(11) - O(10) - C(3)		-121.2	- 121-1	-121.1	-121.4	-121.3

of the substituents X makes itself felt most in the bond lengths C(2) - C(3), C(3) - C(4)and, to a lesser extent, C(6) - C(1) and C(1) - C(2). Similarly, the greatest changes in the bond angles can be observed at the centres C(2), C(3), and C(4). The minimum influence of the substituent on the geometry can be observed at the centres C(1), C(6), and C(5).

For comparison, Tables I and II give also the bond lengths and angles calculated from X-ray diffraction^{1,4} for *m*-nitro- and *m*-aminobenzoic acids. It can be seen that for most geometrical parameters the CNDO/2 calculation gives very close values to those obtained from X-ray diffraction. Similar to the *para*-series⁷, the CNDO/2 calculation appears to overestimate systematically the C-H bond lengths. In the case of OH, CO, and C-NO₂ bonds the comparison is difficult, because in crystal lattice these groups strongly participate in formation of hydrogen bonds.

Table VIII compares total and relative energies of the optimized structures. Effect of conformation of carboxyl group with respect to the substituent X is slight (except

1026

TABLE V

Calculated structural parameters of m-fluorobenzoic acid. The syn(anti) conformations are denoted as S(A)

Bond, pm	<i>I</i> -A	/-S	11	Bond angle, $^{\circ}$	<i>I</i> -A	<i>I-</i> S	II
C(1)—C(2)	139.5	139.5	139-4	C(1)C(2)-C(3)	119.7	119.7	121.3
C(2) - C(3)	138.6	138.7	138.7	C(2) - C(3) - C(4)	121.7	121.8	122.0
C(3)-C(4)	138-9	138.9	138.8	C(3) - C(4) - C(5)	118.4	118.4	117.2
C(4)-C(5)	138-4	138.4	138-5	C(4)-C(5)-C(6)	120.5	120.4	120.7
C(5)-C(6)	138.4	138.3	138.3	C(5)-C(6)-C(1)	121-2	121.3	122.9
C(6)C(1)	139-6	139-6	139.6	C(6) - C(1) - C(2)	118.4	118-4	115.9
C(7)-C(1)	144.7	144.7	147.3	C(7) - C(1) - C(2)	120.7	120.6	122.3
O(8)C(7)	135.7	135.7	130.0	O(8)—C(7)—C(1)	115.4	115.4	118.0
O(9)C(7)	127-1	127-1	130.0	O(9)C(7)C(1)	126.8	126.9	117.7
F-C(3)	134.9	134.9	135.4	FC(3)C(4)	119-1	119-1	118.5
H(2)C(2)	111.6	111-6	111.8	H(2)-C(2)-C(3)	119.9	119.9	118.5
H(4)C(4)	111.5	111.5	111.6	H(4)-C(4)-C(5)	121-2	121-1	121.7
H(5)C(5)	111.7	111.7	112.0	H(5)-C(5)-C(6)	120.0	119.9	120.3
H(6)C(6)	111.7	111.8	112.0	H(6)-C(6)-C(1)	119-3	119-2	119.0
H(8)—O(8)	103-2	103-2		H(8)—O(8)—C(7)	108.3	108.2	

TABLE VI

Calculated structural parameters of *m*-cyanobenzoic acid. The *syn(anti)* conformations are denoted as S(A)

Bond, pm	I-A	<i>I</i> -S	II	Bond angle, °	<i>I</i> -A	I-S	II
C(1)—C(2)	139.5	139.5	139-3	C(1)—C(2)—C(3)	122-1	122.4	123.8
C(2)—C(3)	139-3	139.3	139-4	C(2)—C(3)—C(4)	118.2	118.1	118.3
C(3)—C(4)	139.5	139-5	139.5	C(3)-C(4)-C(5)	121.0	121.0	119-9
C(4)—C(5)	138-3	138-4	138.3	C(4)-C(5)-C(6)	119.6	119.7	119.7
C(5)-C(6)	138-3	138-3	138-4	C(5) - C(6) - C(1)	121.5	121.4	123-1
C(6)C(1)	139.6	139.6	139.5	C(6)-C(1)-C(2)	117.7	117.6	115-1
C(7)C(1)	144.6	144.6	147.3	C(7)—C(1)—C(6)	120.1	122-3	122.7
O(8)-C(7)	135.7	135.7	130.0	O(8)—C(7)—C(1)	115-9	115-8	117.8
O(9)C(7)	127.1	127.1	130.0	O(9)—C(7)—C(1)	126.4	126.5	117.8
C(N)C(3)	141.7	141.7	141.6	C(N)-C(3)-C(2)	121.3	120.9	121.3
NC(N)	119.2	119-2	119-4	N-C(N)-C(3)	179-8	179.9	179.9
H(2)C(2)	111.8	111.8	112.0	H(2) - C(2) - C(1)	118-9	118.7	118-6
H(4)C(4)	111-8	111.8	111.9	H(4)-C(4)-C(3)	119.5	119.5	120.0
H(5)C(5)	111-6	111.7	112.0	H(5)-C(5)-C(4)	120.2	120.1	119.7
H(6)-C(6)	111.8	111.8	112.0	H(6)-C(6)-C(5)	119.5	119.4	117-9
H(8)—O(8)	103.2	103-2		H(8)O(8)C(7)	108.0	108.1	-

meta-Substituted Benzoic Acids and Their Anions

for X = OH) and does not exceed the energy of 1.5 kJ mol^{-1} , which indicates that all the given conformations must be taken into account in the respective study of the

TABLE VII

Calculated structural parameters of m-hydroxybenzoic acid. The syn(anti) conformations are denoted as S(A)

Structure	<i>I</i> -A,S	I-A,A	<i>I-</i> S,S	I-S,A	//-S	<i>11</i> -A	<i>IV</i> -A	IV-S
Bond lengths, pm								
C(1)C(2)	139.5	139.4	139-5	139.4	139-3	139-3	139.0	138-9
C(2) - C(3)	139.0	139-1	139.0	J 39· J	139.0	139-1	141.3	4 ·4
C(3)-C(4)	139.3	139.2	139.3	139-1	139.2	139-1	141-4	141.3
C(4)—C(5)	138.3	138-3	138.3	138-4	138-4	138-5	137.7	137.8
C(5)—C(6)	138.4	138-3	138.4	138.3	138-3	138.2	138.6	138.6
C(6)—C(1)	139.5	139.6	139.6	139.6	139.6	139.6	140-1	140.2
C(7)—C(1)	144.7	144.7	144.7	144.7	147-2	147.2	144.2	144.2
O(8)—C(7)	135.7	135.7	135.7	135.7	130.0	130.0	136-1	136-2
O(9)—C(7)	127.1	127-1	127.1	127.1	130.0	130.0	127.5	127.4
O(10)—C(3)	136.9	136-9	136.9	136-9	137-3	137-3	131.9	131-9
H(2)C(2)	112.9	111.7	113.0	111.7	112.0	111.9	112.2	112.2
H(4)—C(4)	111.6	111.6	111.6	111.7	111.8	111.9	112.2	112.2
H(5)—C(5)	111.7	111.7	111.7	111.7	112.0	112.0	112.2	112-2
H(6)—C(6)	111.7	111.7	111.8	111.7	112.0	112.0	111.8	111.9
H(8)—O(8)	103-2	103-2	103-2	103-2			103-3	103-3
H(10)—O(10)	103-2	103-2	103-2	103-2	103-2	103.2		
Bond angle, $^{\circ}$								
C(1) = C(2) = C(3)	121-3	121.2	121.4	121.3	123-1	122.8	124.9	125.0
C(2) = C(3) = C(4)	119.2	119.3	119.2	119.2	119.6	119.7	112.8	112.7
C(3) = C(4) = C(5)	120.1	120.1	120.0	120.1	118.6	118.8	123.9	123.9
C(4) = C(5) = C(6)	120.3	120.2	120.4	120.3	120.6	120.4	121.1	121.1
C(5) - C(6) - C(1)	120.8	120.8	120.8	120.7	122.5	122.5	118-3	118.2
C(6) - C(1) - C(2)	118.3	118.4	118.2	118.3	115.6	115.8	119-1	119-1
C(7) - C(1) - C(6)	120.3	119.8	122.1	122-2	122.8	122.0	118.8	121.0
O(8) - C(7) - C(1)	115.8	116.0	115.8	115.9	118-1	118.1	116.3	115.7
O(9) - C(7) - C(1)	126.7	126.5	126.7	126.6	117-9	117.8	128.2	128.9
O(10) - C(3) - C(2)	123.2	117.8	123.0	117.6	122.9	118.0	123.5	123.5
H(2) - C(2) - C(1)	119.5	119.7	119.4	119.5	119.3	119.5	117.0	116.9
H(4) - C(4) - C(3)	119.6	119.6	119.7	119.7	120.4	120.3	118-7	118.7
H(5) - C(5) - C(4)	119.7	119.7	119-6	119.6	119.0	119-1	119.8	119.7
H(6) - C(6) - C(5)	119.8	119.8	119.7	119.7	118.2	118.2	121-1	121.0
H(8) - O(8) - C(7)	108.1	108.0	108.1	108.0	_	_	108.2	108.2
H(10)-C(10)-C(3)	108-4	108.3	108-2	108.5	107-7	108-1		_

substituent effect. A more distinct preference (by 35 and 39 kJ mol⁻¹, respectively) of pyramidal conformation of amino group in free and dissociated *m*-aminobenzoic acid as compared with the planar form of the substituent $X = NH_2$ indicates that the latter form can be neglected in analogous studies.

TABLE VIII

Comparison of total and relative energies of conformers of the studied structures of meta-substituted benzoic acids

Substituent	Structure	$-E_{tot}^{a}$	E _{rel} ^b	
NO ₂	I-syn	364 581-91	0.75	
NO ₂	I-anti	364 582.66	0.00	
NO ₂	П	362 422 20	_	
NH ₂ ^b	I-syn	271 769.87	0.00	
NH_2^{b}	I-anti	271 769.73	0.14	
NH_2^{b}	Π	269 553.06	0.00	
NH_2^{c}	I-syn	271 735-33	34.54	
NH_2^c	I-anti	271 735.02	34.85	
NH_2^c	11	269 514.25	38.81	
CH ₃	I-syn	261 873-24	0.03	
CH,	I-anti	261 873-27	0.00	
CH	11	259 658.33	_	
осй,	I-syn,syn	310 268.13	0.05	
OCH,	I-syn,anti	310 267.99	0.16	· • •
OCH,	I-anti,syn	310 268.15	0.00	
OCH,	I-anti,anti	310 268.08	0.02	
OCH,	II-syn	308 061.49	0.00	
OCH,	II-anti	308 060-11	1-38	
F	I-syn	309 871.50	0.13	
F	I-anti	309 871.63	0.00	
F	11	307 677.07		
CN	I-svn	285 706-36	0.21	
CN	Lanti	285 706-57	0.00	
CN	11	283 515-39	0.00	
OH	Levn svn	287 488-90	0.00	
OH	I-syn anti	287 488-24	0.66	
он	I-anti svn	287 488-68	0.22	
OH	I-anti anti	287 488-44	0.46	
он	II-svn	285 280.69	0.00	
OH	II.anti	285 277.68	3.01	
OH	IV-svn	285 276.39	4.30	
011	IV anti	205 270 39	- 30	

" The values are given in kJ mol⁻¹; ^b pyramidal NH₂; ^c planar NH₂.

1028

REFERENCES

- J. Dhaneshwar N. N., Tavale S. S., Pant J. M.: Acta Crystallogr., Sect. B 30, 583 (1974).
- 2. Jones F. T., Wong R. Y.: Microscope 23, 1 (1975).
- 3. Dhaneshwar N. N., Kulkarni A. G., Tavale S. S., Pant L. M.: Acta Crystallogr., Sect. B 31, 1978 (1975).
- 4. Voogd J., Verzijl B. H. M., Duisenberg A. J. M.: Acta Crystallogr., Sect. B 36, 2805 (1980).
- Arora S. K., Sundaralingam M., Dancz J. S., Stanford R. M., Marsh R. E.: Acta Crystallogr., Sect. B 29, 1849 (1973).
- 6. Pancíř J.: Theor. Chim. Acta 29, 21 (1973).
- 7. Böhm S., Kuthan J.: This Journal 47, 3393 (1982).
- Pople J. A., Beveridge D. L.: Approximate Molecular Orbital Theory. McGraw-Hill, New York 1970.
- 9. Catalan J., Yanez M.: J. Amer. Chem. Soc. 101, 3490 (1979).
- 10. Hehre W. J., Radom L., Pople J. A.: J. Amer. Chem. Soc. 94, 1496 (1972).

Translated by J. Panchartek.